YES 2.612
H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:
↳ HASKELL
↳ LR
mainModule Main
|
| ((scaleFloat :: Int -> Float -> Float) :: Int -> Float -> Float) |
module Main where
Lambda Reductions:
The following Lambda expression
\(m,_)→m
is transformed to
The following Lambda expression
\(_,n)→n
is transformed to
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
mainModule Main
|
| ((scaleFloat :: Int -> Float -> Float) :: Int -> Float -> Float) |
module Main where
Replaced joker patterns by fresh variables and removed binding patterns.
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
mainModule Main
|
| ((scaleFloat :: Int -> Float -> Float) :: Int -> Float -> Float) |
module Main where
Cond Reductions:
The following Function with conditions
| power | vx 0 | = 1.0 |
| power | x vy@(y+1) | = fromInt x * power x y |
| power | x y | = 1.0 / power x (`negate` y) |
is transformed to
| power | vx xw | = power4 vx xw |
| power | x vy | = power2 x vy |
| power | x y | = power0 x y |
| power0 | x y | = 1.0 / power x (`negate` y) |
| power1 | True x vy | = fromInt x * power x (vy - 1) |
| power1 | wx wy wz | = power0 wy wz |
| power2 | x vy | = power1 (vy >= 1) x vy |
| power2 | xu xv | = power0 xu xv |
| power3 | True vx xw | = 1.0 |
| power3 | xx xy xz | = power2 xy xz |
| power4 | vx xw | = power3 (xw == 0) vx xw |
| power4 | yu yv | = power2 yu yv |
The following Function with conditions
is transformed to
| undefined0 | True | = undefined |
| undefined1 | | = undefined0 False |
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
mainModule Main
|
| ((scaleFloat :: Int -> Float -> Float) :: Int -> Float -> Float) |
module Main where
Let/Where Reductions:
The bindings of the following Let/Where expression
| encodeFloat m (n + k) |
| where | |
| |
| |
| |
| |
are unpacked to the following functions on top level
| scaleFloatN | yw | = scaleFloatN0 yw (scaleFloatVu12 yw) |
| scaleFloatVu12 | yw | = decodeFloat yw |
| scaleFloatM0 | yw (m,vv) | = m |
| scaleFloatN0 | yw (vw,n) | = n |
| scaleFloatM | yw | = scaleFloatM0 yw (scaleFloatVu12 yw) |
The bindings of the following Let/Where expression
| fromInteger x * power 2 y |
| where |
| power | vx xw | = power4 vx xw |
| power | x vy | = power2 x vy |
| power | x y | = power0 x y |
|
|
| power0 | x y | = 1.0 / power x (`negate` y) |
|
|
| power1 | True x vy | = fromInt x * power x (vy - 1) |
| power1 | wx wy wz | = power0 wy wz |
|
|
| power2 | x vy | = power1 (vy >= 1) x vy |
| power2 | xu xv | = power0 xu xv |
|
|
| power3 | True vx xw | = 1.0 |
| power3 | xx xy xz | = power2 xy xz |
|
|
| power4 | vx xw | = power3 (xw == 0) vx xw |
| power4 | yu yv | = power2 yu yv |
|
are unpacked to the following functions on top level
| primFloatEncodePower0 | x y | = 1.0 / primFloatEncodePower x (`negate` y) |
| primFloatEncodePower1 | True x vy | = fromInt x * primFloatEncodePower x (vy - 1) |
| primFloatEncodePower1 | wx wy wz | = primFloatEncodePower0 wy wz |
| primFloatEncodePower2 | x vy | = primFloatEncodePower1 (vy >= 1) x vy |
| primFloatEncodePower2 | xu xv | = primFloatEncodePower0 xu xv |
| primFloatEncodePower3 | True vx xw | = 1.0 |
| primFloatEncodePower3 | xx xy xz | = primFloatEncodePower2 xy xz |
| primFloatEncodePower4 | vx xw | = primFloatEncodePower3 (xw == 0) vx xw |
| primFloatEncodePower4 | yu yv | = primFloatEncodePower2 yu yv |
| primFloatEncodePower | vx xw | = primFloatEncodePower4 vx xw |
| primFloatEncodePower | x vy | = primFloatEncodePower2 x vy |
| primFloatEncodePower | x y | = primFloatEncodePower0 x y |
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
mainModule Main
|
| ((scaleFloat :: Int -> Float -> Float) :: Int -> Float -> Float) |
module Main where
Num Reduction: All numbers are transformed to thier corresponding representation with Pos, Neg, Succ and Zero.
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
↳ HASKELL
↳ Narrow
mainModule Main
|
| (scaleFloat :: Int -> Float -> Float) |
module Main where
Haskell To QDPs
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
↳ HASKELL
↳ Narrow
↳ AND
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
new_primPlusNat(Succ(yx1300), Succ(yx100000)) → new_primPlusNat(yx1300, yx100000)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- new_primPlusNat(Succ(yx1300), Succ(yx100000)) → new_primPlusNat(yx1300, yx100000)
The graph contains the following edges 1 > 1, 2 > 2
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
↳ HASKELL
↳ Narrow
↳ AND
↳ QDP
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
new_primMulNat(Succ(yx50000), Succ(yx10000)) → new_primMulNat(yx50000, Succ(yx10000))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- new_primMulNat(Succ(yx50000), Succ(yx10000)) → new_primMulNat(yx50000, Succ(yx10000))
The graph contains the following edges 1 > 1, 2 >= 2
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
↳ HASKELL
↳ Narrow
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
new_fs(Float(yx150, yx151), yx300) → new_primFloatEncodePower30(yx300)
new_primFloatEncodePower3(Succ(yx12100), Succ(yx300)) → new_primFloatEncodePower3(yx12100, yx300)
new_primFloatEncodePower2(Succ(yx121000)) → new_primFloatEncodePower3(Succ(Succ(yx121000)), Succ(Zero))
new_primFloatEncodePower3(Zero, Succ(yx300)) → new_fs(new_fromDouble, yx300)
new_primFloatEncodePower30(Zero) → new_primFloatEncodePower3(Succ(Zero), Succ(Zero))
new_primFloatEncodePower30(Succ(yx121000)) → new_primFloatEncodePower3(Succ(Succ(yx121000)), Succ(Zero))
new_primFloatEncodePower2(Zero) → new_primFloatEncodePower3(Succ(Zero), Succ(Zero))
new_primFloatEncodePower31(yx300) → new_fs(new_fromDouble, yx300)
new_primFloatEncodePower3(Succ(yx12100), Zero) → new_primFloatEncodePower30(yx12100)
The TRS R consists of the following rules:
new_fromDouble → Float(Pos(Succ(Zero)), Pos(Succ(Zero)))
The set Q consists of the following terms:
new_fromDouble
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
↳ HASKELL
↳ Narrow
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
Q DP problem:
The TRS P consists of the following rules:
new_fs(Float(yx150, yx151), yx300) → new_primFloatEncodePower30(yx300)
new_primFloatEncodePower3(Succ(yx12100), Succ(yx300)) → new_primFloatEncodePower3(yx12100, yx300)
new_primFloatEncodePower3(Zero, Succ(yx300)) → new_fs(new_fromDouble, yx300)
new_primFloatEncodePower30(Zero) → new_primFloatEncodePower3(Succ(Zero), Succ(Zero))
new_primFloatEncodePower30(Succ(yx121000)) → new_primFloatEncodePower3(Succ(Succ(yx121000)), Succ(Zero))
new_primFloatEncodePower3(Succ(yx12100), Zero) → new_primFloatEncodePower30(yx12100)
The TRS R consists of the following rules:
new_fromDouble → Float(Pos(Succ(Zero)), Pos(Succ(Zero)))
The set Q consists of the following terms:
new_fromDouble
We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_primFloatEncodePower3(Zero, Succ(yx300)) → new_fs(new_fromDouble, yx300) at position [0] we obtained the following new rules:
new_primFloatEncodePower3(Zero, Succ(yx300)) → new_fs(Float(Pos(Succ(Zero)), Pos(Succ(Zero))), yx300)
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
↳ HASKELL
↳ Narrow
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
new_fs(Float(yx150, yx151), yx300) → new_primFloatEncodePower30(yx300)
new_primFloatEncodePower3(Succ(yx12100), Succ(yx300)) → new_primFloatEncodePower3(yx12100, yx300)
new_primFloatEncodePower30(Zero) → new_primFloatEncodePower3(Succ(Zero), Succ(Zero))
new_primFloatEncodePower30(Succ(yx121000)) → new_primFloatEncodePower3(Succ(Succ(yx121000)), Succ(Zero))
new_primFloatEncodePower3(Zero, Succ(yx300)) → new_fs(Float(Pos(Succ(Zero)), Pos(Succ(Zero))), yx300)
new_primFloatEncodePower3(Succ(yx12100), Zero) → new_primFloatEncodePower30(yx12100)
The TRS R consists of the following rules:
new_fromDouble → Float(Pos(Succ(Zero)), Pos(Succ(Zero)))
The set Q consists of the following terms:
new_fromDouble
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
↳ HASKELL
↳ Narrow
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
Q DP problem:
The TRS P consists of the following rules:
new_fs(Float(yx150, yx151), yx300) → new_primFloatEncodePower30(yx300)
new_primFloatEncodePower3(Succ(yx12100), Succ(yx300)) → new_primFloatEncodePower3(yx12100, yx300)
new_primFloatEncodePower30(Zero) → new_primFloatEncodePower3(Succ(Zero), Succ(Zero))
new_primFloatEncodePower30(Succ(yx121000)) → new_primFloatEncodePower3(Succ(Succ(yx121000)), Succ(Zero))
new_primFloatEncodePower3(Zero, Succ(yx300)) → new_fs(Float(Pos(Succ(Zero)), Pos(Succ(Zero))), yx300)
new_primFloatEncodePower3(Succ(yx12100), Zero) → new_primFloatEncodePower30(yx12100)
R is empty.
The set Q consists of the following terms:
new_fromDouble
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
new_fromDouble
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
↳ HASKELL
↳ Narrow
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
Q DP problem:
The TRS P consists of the following rules:
new_fs(Float(yx150, yx151), yx300) → new_primFloatEncodePower30(yx300)
new_primFloatEncodePower3(Succ(yx12100), Succ(yx300)) → new_primFloatEncodePower3(yx12100, yx300)
new_primFloatEncodePower30(Zero) → new_primFloatEncodePower3(Succ(Zero), Succ(Zero))
new_primFloatEncodePower30(Succ(yx121000)) → new_primFloatEncodePower3(Succ(Succ(yx121000)), Succ(Zero))
new_primFloatEncodePower3(Zero, Succ(yx300)) → new_fs(Float(Pos(Succ(Zero)), Pos(Succ(Zero))), yx300)
new_primFloatEncodePower3(Succ(yx12100), Zero) → new_primFloatEncodePower30(yx12100)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_fs(Float(yx150, yx151), yx300) → new_primFloatEncodePower30(yx300) we obtained the following new rules:
new_fs(Float(Pos(Succ(Zero)), Pos(Succ(Zero))), z0) → new_primFloatEncodePower30(z0)
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
↳ HASKELL
↳ Narrow
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
Q DP problem:
The TRS P consists of the following rules:
new_fs(Float(Pos(Succ(Zero)), Pos(Succ(Zero))), z0) → new_primFloatEncodePower30(z0)
new_primFloatEncodePower3(Succ(yx12100), Succ(yx300)) → new_primFloatEncodePower3(yx12100, yx300)
new_primFloatEncodePower30(Zero) → new_primFloatEncodePower3(Succ(Zero), Succ(Zero))
new_primFloatEncodePower30(Succ(yx121000)) → new_primFloatEncodePower3(Succ(Succ(yx121000)), Succ(Zero))
new_primFloatEncodePower3(Zero, Succ(yx300)) → new_fs(Float(Pos(Succ(Zero)), Pos(Succ(Zero))), yx300)
new_primFloatEncodePower3(Succ(yx12100), Zero) → new_primFloatEncodePower30(yx12100)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_primFloatEncodePower3(Succ(yx12100), Succ(yx300)) → new_primFloatEncodePower3(yx12100, yx300) we obtained the following new rules:
new_primFloatEncodePower3(Succ(Succ(y_0)), Succ(Succ(y_1))) → new_primFloatEncodePower3(Succ(y_0), Succ(y_1))
new_primFloatEncodePower3(Succ(Zero), Succ(Succ(y_0))) → new_primFloatEncodePower3(Zero, Succ(y_0))
new_primFloatEncodePower3(Succ(Succ(y_0)), Succ(Zero)) → new_primFloatEncodePower3(Succ(y_0), Zero)
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
↳ HASKELL
↳ Narrow
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
new_fs(Float(Pos(Succ(Zero)), Pos(Succ(Zero))), z0) → new_primFloatEncodePower30(z0)
new_primFloatEncodePower3(Succ(Succ(y_0)), Succ(Succ(y_1))) → new_primFloatEncodePower3(Succ(y_0), Succ(y_1))
new_primFloatEncodePower30(Zero) → new_primFloatEncodePower3(Succ(Zero), Succ(Zero))
new_primFloatEncodePower30(Succ(yx121000)) → new_primFloatEncodePower3(Succ(Succ(yx121000)), Succ(Zero))
new_primFloatEncodePower3(Succ(Succ(y_0)), Succ(Zero)) → new_primFloatEncodePower3(Succ(y_0), Zero)
new_primFloatEncodePower3(Succ(Zero), Succ(Succ(y_0))) → new_primFloatEncodePower3(Zero, Succ(y_0))
new_primFloatEncodePower3(Zero, Succ(yx300)) → new_fs(Float(Pos(Succ(Zero)), Pos(Succ(Zero))), yx300)
new_primFloatEncodePower3(Succ(yx12100), Zero) → new_primFloatEncodePower30(yx12100)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 4 less nodes.
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
↳ HASKELL
↳ Narrow
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ ForwardInstantiation
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
new_primFloatEncodePower30(Succ(yx121000)) → new_primFloatEncodePower3(Succ(Succ(yx121000)), Succ(Zero))
new_primFloatEncodePower3(Succ(Succ(y_0)), Succ(Zero)) → new_primFloatEncodePower3(Succ(y_0), Zero)
new_primFloatEncodePower3(Succ(yx12100), Zero) → new_primFloatEncodePower30(yx12100)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_primFloatEncodePower3(Succ(yx12100), Zero) → new_primFloatEncodePower30(yx12100) we obtained the following new rules:
new_primFloatEncodePower3(Succ(Succ(y_0)), Zero) → new_primFloatEncodePower30(Succ(y_0))
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
↳ HASKELL
↳ Narrow
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
new_primFloatEncodePower3(Succ(Succ(y_0)), Zero) → new_primFloatEncodePower30(Succ(y_0))
new_primFloatEncodePower30(Succ(yx121000)) → new_primFloatEncodePower3(Succ(Succ(yx121000)), Succ(Zero))
new_primFloatEncodePower3(Succ(Succ(y_0)), Succ(Zero)) → new_primFloatEncodePower3(Succ(y_0), Zero)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
new_primFloatEncodePower30(Succ(yx121000)) → new_primFloatEncodePower3(Succ(Succ(yx121000)), Succ(Zero))
The remaining pairs can at least be oriented weakly.
new_primFloatEncodePower3(Succ(Succ(y_0)), Zero) → new_primFloatEncodePower30(Succ(y_0))
new_primFloatEncodePower3(Succ(Succ(y_0)), Succ(Zero)) → new_primFloatEncodePower3(Succ(y_0), Zero)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
Tuple symbols:
| M( new_primFloatEncodePower3(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
| M( new_primFloatEncodePower30(x1) ) = | 1 | + | | · | x1 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
none
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
↳ HASKELL
↳ Narrow
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
new_primFloatEncodePower3(Succ(Succ(y_0)), Zero) → new_primFloatEncodePower30(Succ(y_0))
new_primFloatEncodePower3(Succ(Succ(y_0)), Succ(Zero)) → new_primFloatEncodePower3(Succ(y_0), Zero)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 2 less nodes.
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
↳ HASKELL
↳ Narrow
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
new_primFloatEncodePower3(Succ(Succ(y_0)), Succ(Succ(y_1))) → new_primFloatEncodePower3(Succ(y_0), Succ(y_1))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- new_primFloatEncodePower3(Succ(Succ(y_0)), Succ(Succ(y_1))) → new_primFloatEncodePower3(Succ(y_0), Succ(y_1))
The graph contains the following edges 1 > 1, 2 > 2